4,136 research outputs found

    Electronic position indicator for latching solenoid valves

    Get PDF
    Electronic circuit connected to solenoid valve coils visually indicates the position of the valve stem. Transient suppression is provided to prevent damaging voltage spikes

    Coherent Cancellation of Backaction Noise in optomechanical Force Measurements

    Get PDF
    Optomechanical detectors have reached the standard quantum limit in position and force sensing where measurement backaction noise starts to be the limiting factor for the sensitivity. A strategy to circumvent measurement backaction, and surpass the standard quantum limit, has been suggested by M. Tsang and C. Caves in Phys. Rev. Lett. 105 123601 (2010). We provide a detailed analysis of this method and assess its benefits, requirements, and limitations. We conclude that a proof-of-principle demonstration based on a micro-optomechanical system is demanding, but possible. However, for parameters relevant to gravitational wave detectors the requirements for backaction evasion appear to be prohibitive.Comment: 9 pages, 6 figure

    Interfaces within graphene nanoribbons

    Get PDF
    We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to details such as whether regions of a semiconducting armchair nanoribbon are included in the curved structure -- such regions strongly suppress the conductance. Surprisingly, this suppression is not due to the band gap of the semiconducting nanoribbon, but is linked to the valley degree of freedom. Though we study these effects in the simplest contexts, they can be expected to occur for more complicated structures, and we show results for rings as well. We conclude that experience from electron gas waveguides does not carry over to graphene nanostructures. The interior interfaces causing extra scattering result from the extra effective degrees of freedom of the graphene structure, namely the valley and sublattice pseudospins

    Spin-orbit induced longitudinal spin-polarized currents in non-magnetic solids

    Get PDF
    For certain non-magnetic solids with low symmetry the occurrence of spin-polarized longitudinal currents is predicted. These arise due to an interplay of spin-orbit interaction and the particular crystal symmetry. This result is derived using a group-theoretical scheme that allows investigating the symmetry properties of any linear response tensor relevant to the field of spintronics. For the spin conductivity tensor it is shown that only the magnetic Laue group has to be considered in this context. Within the introduced general scheme also the spin Hall- and additional related transverse effects emerge without making reference to the two-current model. Numerical studies confirm these findings and demonstrate for (Au1−x_{1-x}Ptx_{\rm x})4_4Sc that the longitudinal spin conductivity may be in the same order of magnitude as the conventional transverse one. The presented formalism only relies on the magnetic space group and therefore is universally applicable to any type of magnetic order.Comment: 5 pages, 1 table, 2 figures (3 & 2 subfigures

    Interfaces Within Graphene Nanoribbons

    Get PDF
    We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to details such as whether regions of a semiconducting armchair nanoribbon are included in the curved structure -- such regions strongly suppress the conductance. Surprisingly, this suppression is not due to the band gap of the semiconducting nanoribbon, but is linked to the valley degree of freedom. Though we study these effects in the simplest contexts, they can be expected to occur for more complicated structures, and we show results for rings as well. We conclude that experience from electron gas waveguides does not carry over to graphene nanostructures. The interior interfaces causing extra scattering result from the extra effective degrees of freedom of the graphene structure, namely the valley and sublattice pseudospins.Comment: 19 pages, published version, several references added, small changes to conclusion

    Simultaneous reduction to triangular and companion forms of pairs of matrices: the case rank(I−-AZ)=1

    Get PDF
    AbstractThis paper is concerned with simultaneous reduction to triangular and companion forms of pairs of matrices A, Z with rank(I−AZ)=1. Special attention is paid to the case where A is a first and Z is a third companion matrix. Two types of simultaneous triangularization problems are considered: (1) the matrix A is to be transformed to upper triangular and Z to lower triangular form, (2) both A and Z are to be transformed to the same (upper) triangular form. The results on companions are made coordinate free by characterizing the pairs A, Z for which there exists an invertible matrix S such that S−1AS is of first and S−1ZS is of third companion type. One of the main theorems reads as follows: If rank(I−AZ)=1 and αζ≠1 for every eigenvalue α of A and every eigenvalue ζ of Z, then A and Z admit simultaneous reduction to complementary triangular forms

    Utilizing weak pump depletion to stabilize squeezed vacuum states

    Get PDF
    We propose and demonstrate a pump-phase locking technique that makes use of weak pump depletion (WPD) - an unavoidable effect that is usually neglected - in a sub-threshold optical parametric oscillator (OPO). We show that the phase difference between seed and pump beam is imprinted on both light fields by the non-linear interaction in the crystal and can be read out without disturbing the squeezed output. Our new locking technique allows for the first experimental realization of a pump-phase lock by reading out the pre-existing phase information in the pump field. There is no degradation of the detected squeezed states required to implement this scheme.Comment: 11 pages, 7 figure
    • …
    corecore